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Abstract

This paper presents a new formulation for the elastic stability of static non-holonomic structural systems. The theory
is developed within the tradition of discrete (or discretized) systems written in terms of a set of generalized coordinates
and control parameters. The non-holonomic conditions are written as constraint functions. The formulation employs a
Lagrangian functional in terms of the total potential energy, the constraint functions and multipliers. Critical states are
identified and the solution is next expanded by regular perturbations. This allows to establish a classification of critical
states and identify the initial postcritical behavior. This solution is valid provided that there is no change in the active
constraints of the system. The paper presents a mathematical analysis of the critical condition, and concludes with
simple examples of two degree-of-freedom systems previously investigated by other authors.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The objective of this paper is to extend the general theory of elastic stability of time independent, discrete
structural systems to problems in which there are constraints in the displacement field. Such systems are
known as “non-holonomic”, and arise in cases in which a new boundary is reached as a consequence of the
deformation of the structure (a late boundary condition), and in systems that can only deflect in a given
direction (one-way systems).

Problems involving non-holonomic systems that buckle under static loads are common in engineering
practice and research. The buckling of perfect and imperfect elastic rings in a cavity under hoop com-
pression was studied by Bucciarelli and Pian (1964), Hsu et al. (1964), Zagustin and Herrmann (1967), and
El-Bayoumi (1972). Burgess (1971a) considered imperfect rings in a circular cavity under uniform com-
pression, and showed that there is a critical imperfection amplitude for which buckling may be modeled as a
bifurcation. For imperfections smaller than the critical one, the ring recovers the circular shape, while for
larger imperfections there is a limit point behavior. Concentric rings or cylinders with different stiffness were
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investigated by Kyriakides (1986). Kyriakides and Youn (1984) concluded that rings in a rigid cavity with a
local pressure in the zone enclosed by an inward geometric imperfection display a limit point behavior. This
work was extended by Li and Kyriakides (1990, 1991) to investigate buckling propagation in pipelines in a
rigid cavity.

An interest in extending the general theory of elastic stability to deal with non-holonomic problems is
found, for example, in the works of Burgess (1969, 1971b), Klarbrig (1986), and Godoy (1987).

The basis of the stability theory of structures were laid by the pioneer works of Euler and Lagrange, but
what is known at present as the “‘general theory of elastic stability” under static loads was initiated by
Koiter (1945) for continuous systems (see also Como and Grimaldi, 1995). This theory is classified as
“general” in the literature partly because of its nonlinearity, but also because it may deal with classes of
problems rather than with solutions to specific structural configurations. A recent account of the evolution
of the theory may be found in Godoy (2002).

The theory was later formulated for discrete structural systems, and is summarized in a number of books,
such as Croll and Walker (1972), Thompson and Hunt (1973), Britvec (1973), Huseyin (1975), El-Naschie
(1990), Godoy (2000). An energy formulation is employed in those books and the derivatives of the energy
at the critical state are used to produce the general conditions for bifurcation or limit point behavior, and
the sensitivity of the critical state. The approach described above employs static bifurcation analysis to
investigate instability. Other approaches to buckling attempt to explain the phenomenon using local
analysis of bifurcation points, in terms of a pitchfork bifurcation or in terms of saddle-node bifurcation
(Wiggins, 1990; Nayfeh and Balachandran, 1995).

Some progress has been obtained to consider non-holonomic systems with theoretical generality. Burgess
(1969, 1971b) established conditions to identify a critical state in non-holonomic systems. Klarbrig (1986)
considered the problem of equilibrium, uniqueness and stability of nonlinear discrete systems with uni-
lateral contact. Finally, the identification of conditions for regular and critical states was studied by the
authors (Mirasso and Godoy, 1992, 1997).

The above contributions have concentrated on the assessment of static stability of an equilibrium state.
However, a complete classification of critical states, the relation between an equilibrium path and its sta-
bility, and information about the initial postcritical behavior of the system, is still lacking. Those are the
specific objectives of this paper.

A summary of previous work in this field carried out by the authors is briefly discussed in Section 2. The
classification of critical states is developed in Section 3. Section 4 contains the different possibilities of
bifurcation behavior, while the results for limit point behavior are discussed in Section 5. A mathematical
analysis of the conditions of critical states is presented in Section 6. Simple link models, previously studied
by Burgess (1971a), are solved using the approach presented in this work. Concluding remarks are made in
Section 8.

2. Summary of previous work

In a previous paper (Mirasso and Godoy, 1997) the authors formulated the conditions of a critical state
in non-holonomic systems by means of constraint functions in terms of the displacements, which are
formulated together with the total potential energy of the structure (Burgess, 1971a). The structure is
modeled by means of nonlinear kinematic and elastic constitutive equations.

The total potential energy V(Q;, A) is written in terms of the generalized coordinates Q; and the load
parameter 4. Due to the kinematic nonlinearity the energy becomes quartic in the generalized coordinates
and linear in the load parameter. The set of constraints z are grouped in a vector F# with components
affecting the displacements Q;, and may be written in the form
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F(Q)=0 for Z=1,...,z (1)
The constraints may be active or passive. Active constraints are those for which

FY O =0 for a=1,...,m (2)
in which m is the number of active constraints. Passive constraints satisfy the condition

Fr(Q") <0 for p=1,...,(z—m) (3)

where Q¥ are the values of the generalized coordinates of a possible configuration of the system. The
Lagrangian functional L is defined as

L(Oi, 2 1z) = V(Oi, 2) + 1F*(01) 4)

where u, are Lagrange multipliers.
This led to equilibrium conditions in terms of variational inequalities, which were written in the form of
Kuhn-Tucker conditions (see, for example, Arora, 1990)

oL .~ ZIE
ag—Lw—K+wE|—0
oL 5
E 2 0, ; ( )
ol @M F/Q)I <
uF ()" =

where the notation ( ), = Q ) when it is applied on ¥, F or L; and ( )|” indicates that the variables to the left
are evaluated at an equilibrium state £. The Einstein convention has been used to indicate summation on
the whole range of variables, except on the complementarity condition pu,F* (Q,)| = 0. An equilibrium
state in this problem is provided by a set of displacement coordinates Q; and load parameter / that satisfy
Eq. (5).
Next, a perturbation analysis is carried out to investigate the uniqueness of the solution and to distin-
guish between regular and critical states. The variables in Eq. (5) are expanded in the form
$) =0 +ais s+
As) = 2F 4 s+ LiFs? 4 - (6)
Hz(s) = .”Z + NZS + ;“552 +-
where ¢; = O; — OF is an incremental displacement measured from the equilibrium state; and a dot on top
of a variable indicates a derivative with respect to the perturbation parameter s. The perturbation pa-
rameter may be a component of the displacement vector or any other scalar quantity that takes a nonzero
value along the path being described. The notation of small ¢; is used to identify increments in the dis-
placement field (not total displacements), as in Thompson and Hunt (1973).
Substitution of Eq. (6) into (5) leads to the set of perturbation equations of order p

1 () {8} () - 42

where matrix L is the Hessian of the Lagrangian L; the columns of matrix F are the gradient of the active
constraints F?, where the space of active constraints is R”; q*) € R", AP e R, u”) € R™ are the unknowns in
the perturbation system of order p. For example, in the first-order perturbation system one has q%) = ¢,
) = i and 2 = JF. The terms P~' and f*~' are obtained from the solution of the perturbation equation
of order (p — 1). Vector 1 contains the derivatives of the gradient of the Lagrangian L; with respect to the
control parameter A and its components may be written as




3442 L.A. Godoy, A.E. Mirasso | International Journal of Solids and Structures 40 (2003) 3439-3462

oL, oV FZ
l_ _ (V+ﬂ2,)_V/

o :
Because p, and FZ are not explicit functions of 4, then
ov; ,
=5;=V (8)

Thus, 1 is the vector of generalized loads of the associated holonomic system. The notation ( )" = % has
been used in Eq. (8).
For a non-holonomic system, the conditions required to reach a critical state are obtained from Eq. (7),
which may also be written as
" g0
Lo}

1 P!
AdY) + M{O} + {fp, }
L F
A= g o] ©)

where the general matrix A is

and the vector of unknowns is

Qv — {Zg } (10)

This matrix A is associated to the critical states of a non-holonomic system and is analyzed below.
3. Classification of critical states

A system is said to be at a critical state if its matrix A is singular at a given load level. This means that at a
critical state there are vectors ¢V € R" and pV € R™ that are not simultaneously zero, so that

-0 a

or else
N
A" =0 with "= {EN } (12)

The notation ( )| indicates that the variables to the left are evaluated at the critical state.

Vector d", or its subvectors, constitute a basis in the kernel of matrix A, i.e. they are the eigenvectors of
this matrix associated to a zero eigenvalue. The studies of this paper are restricted to distinct critical states,
in the sense that there is only one zero eigenvalue and the dimension of ker(A) is 1.

The general solution of Eq. (7) can be written as the sum of particular solutions plus the solution of the
homogeneous system (11)

») N 0 P
Ui} =2t o2 U L)

where o, is a parameter used to scale the eigenvectors dy, and the two other vectors are obtained from the
solution of the following systems:

C

(13)
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N0
) -

The complete solution of the system is obtained in two steps: First, the independent terms in the system
(7) must belong to the image of matrix A. Since the image of A and the kernel of AT belong to comple-
mentarity (orthogonal) spaces, then the independent terms of systems (7) must be orthogonal to the basis of
the kernel A”. Since A = A", then ker(A") = ker(A) and is given by the non-zero solution of the homo-
geneous system (11). Thus, the following is obtained:

(bl g)) =0 "

where ( , ) indicates a scalar product. From the above condition, one gets

AP + (VP + (pN,f’H)]C —0 (17)

This is the contraction mechanism identified by Thompson and Hunt (1973) for holonomic systems and
allows to obtain A”°. This contraction mechanism plays the same role as Fredholm’s alternative and
solvability conditions used by other authors (see Nayfeh, 1981, pp. 456).

Second, the choice of the perturbation parameter leads to a new condition. It is possible to choose any
component of q as the perturbation parameter s. Without loss of generality, it is possible to choose the ith
component of q, i.e.

S =(; (18)
Then

ql(p) = 51’17 (19)
where 0, is the Kronecker delta function. Considering Eq. (13), one has

dip = 04, + /{(p)q? +q; (20)

The value of the parameter o, depends on the particular solution chosen for the systems (14), and on the
way in which the eigenvector of A was computed. If one assumes

¢ =1 and ¢ =¢'=0 (21)
then
oy = 5,'!7 (22)
Other valid choices can be made provided s is taken as an adequate parameter to follow the equilibrium
path. If a component g, is taken as perturbation parameter, then the eigenvector ¢" should not have a zero
value in this generalized coordinate.
As seen before, the contraction mechanism is applied to the system (7) and yields Eq. (17). In order to

classify the critical states it is necessary to analyze the above Eq. (17).
The coefficient (g, 1)| is crucial for the classification of critical states. If

@, #£0 (23)
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then the state C is a limit point, and from Eq. (17) one can compute

N -1 N gp—1\ (€
(q",1)
On the other hand, cases in which
(@' n =0 (25)

are bifurcation states. These statements will be examined in the next sections of the paper.

Notice that q"V is the part of the generalized displacements in the critical mode associated to matrix A.
Furthermore, vector 1 is the generalized load applied to the system.

The conditions (23) and (25) are the projections of the vector of generalized loads, 1, in the direction of
the critical mode, q". This is analogous to the interpretation that is made in the general theory of holonomic
systems.

4. Bifurcation states

Let us consider a distinct critical state C, in which the orthogonality condition (25) holds true. Then
(g'L)“ =0 (26)

The first system of perturbation equations is given by

E 13”}{3:}”{%}6—{8} (7)

where i,j = 1,n and a = 1, m. If the contraction mechanism is applied to Eq. (27), then one gets
Ma'L)c =0 (28)

This is valid for any value of 4, on account of Eq. (26).
The solution of the first system of perturbation equations can be written in the form

. N 0
g q; g
{ui}:“l{ufy}”{u’g}

where ¢} and g are the particular solutions of Eq. (14).
The second system of perturbation equations is given by

E H{Z}“{%}%}}%ﬁ} (30)

C

(29)

where
0¥ = Lyndyai + L2 + 2(Lijgi4 + Fashy) (1)
1" = Fjaig
Application of the contraction mechanism and taking Eq. (26) into account yields
(@'1) + (1) =0 (32)

so that Eq. (30) has a solution.
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The solution of the first system of perturbation, Eq. (29), is substituted into Eq. (32), and yields

A2 8oy 402l =0 (33)
where

A= Lig'd)a} + La) +2LiqY q) + 2Fq) a1y + Fqla) 1)

B=Linq} (4} q} + 4797 ) + 2Li,qY 4 + FraY iy + 2Fq) (4} 1) + 4y ) + Fraiq) i (34)

¢=Liyq, 4 9 +3F;q) 4} 1)

This is a quadratic equation in 4, and there are two solutions, so that there are two equilibrium paths as
expected in a bifurcation.

4.1. Asymmetric bifurcation

The nature of the bifurcation is given by the coefficient ¢. If
¢#£0 (35)

the following solutions are obtained from Eq. (33):

—B 4 /B —44g
24

It was previously assumed that s = ¢, so from Eq. (22) one gets o; = 1. The larger of the roots of A¢
corresponds to the slope of the fundamental equilibrium path, while the other root is the slope of the
secondary equilibrium path.

A first-order perturbation solution has been obtained for the secondary equilibrium path passing through
the asymmetric bifurcation, and may now be written as

Oila)) = O +qiaq1+ -+

i€ = (36)

M) =2+ i + - (37)
1) = g+ iSq + -
with
- C N C 0
S =qg' +1q,
q; q; q; (38)

i = 1) + A%

This solution is valid provided
FIO) + (F'4) 1 <0
Ha(q1) =0

are satisfied.

(39)

4.2. Symmetric bifurcation

The condition for symmetric bifurcation is
¢=0 (40)

in which case the quadratic equation (33) has one zero solution

i£=0 (41)
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while the other root is the slope of the fundamental path. The solution of the first-order system of per-
turbation equations is obtained in conjunction with Egs. (29) and (41), leading to

q- = ong) 42
N (42)
Ky = 1l
Egs. (42) are substituted into Eq. (31) and yield
I = (Lingy q) +2F5q) 1) @)
fa = Fqiq))
Thus, the general solution of the second system can now be written as
i q il 4 |
ML= T b+ he+9 % 44
(i) ==t g+t Ui} <>
where ¢7 and 2 are particular solutions of
Ly F¢ qz} {zl}c
y 1 1 e 1 45
[Fj 0 } {ui fa )

where /! and f, are given by Eq. (43).
To compute the value of A one must use the contraction mechanism on the third-order perturbation

equation, i.e.
C
0
- { 0 } (46)

Lij Fe q } {L’} { 12 }
! Y
[Fj 0 } {#a s
where

PE = Lindiand + 3[Lingdn + LA + 3{L;;k9j51k/i + L;;,-‘IM + L”qulz + LA+ L;jéj/;{

+ F kdiqrlty + F; qjﬂz + F,/Z%ﬂz} (47)
= 3F}qiq; + F54i4dx
This leads to
@B+ () = (48)

Next, the solution of the first system of perturbation equations (42) and the second system (44) are
introduced into Eq. (47), so that Eq. (48) becomes

pAC+r© =0 (49)
from which
.. )3
I=-= 50
D (50)
with
3
D =3By (51)

7= %Ljug q) ;' 9) + 4F54) 4 @ 15] + 30 [Ling! 6} 4 + 2F7 4} 18 + F 147 ) 15] + 3o g
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The second-order perturbation solution is now given by

0i(q1) = OF +¢q1 + 1474 +

Maqr) =2 +1g12 + - (52)
palqr) = 1g + a1 + 341 g + -
with
. C
qi 0 612 }
x ) +9 53
=i+ )
This solution is valid for
2
»((C » cdr
FP(OF) + (FPq)) qr + (FYg: + Fg'q)) 5 <0 (54)

ta(qr) =0
Notice that the relation between the coefficients /) and B given by Eq. (51) is also present in the theory of

holonomic systems.
5. Limit points

A limit point is a critical point in which the generalized load vector L; has a non-zero component in the
direction of the critical mode ¢, i.e

(4L #0 (55)
The contraction of the first system of perturbation equations, together with Egs. (28) and (55), lead to

i£=0 (56)
so that the first system of equations has a solution. The first-order solution is completed with

. N

b= 2t “

Notice that these values are in coincidence with the first-order solution of the symmetric bifurcation. The
independent term of the second-order perturbation condition is given by Eq. (42). The contracted form of
the second-order perturbation conditions (Eq. (30)) leads to

(@' L2+ (@1 + (1 1) = 0 (58)

The value of /IC can be computed from this expression in the form
joo_ e
(47'Li)

where ¢ is the coefficient defined in Eq. (34). The second-order solution is completed with Eq. (44), i.e.

b )

where (¢?, 1) and (¢7, 12) have already been obtained as the particular solutions of the systems (14) and
(45).

(59)

) (60)




3448 L.A. Godoy, A.E. Mirasso | International Journal of Solids and Structures 40 (2003 ) 3439-3462
The postcritical equilibrium path is now given by
0i(q) = O + q1q) +3700°¢) +4)) + -+
Ma) =25 +1¢1 7 + -+ (61)
Ha(q1) = 1§+ quit) + 301 (g + 1) + -+

Such expressions are valid as long as the conditions

. 2
FPOF) + (F1q)) aqr + IFT () + 47) + Fal' )17 % <0 (62)
ta(q1) =0

are satisfied. There is a unique postcritical equilibrium path in this problem, with a zero slope at the critical
state and a non-zero curvature. All the expressions written here are reduced to those of the general theory
for holonomic systems whenever there are no constraints in the displacements, or else they are passive.

6. Mathematical analysis of the critical condition
6.1. On the mathematical meaning of the critical state

At a critical state one is interested in the non-zero solutions of the system (7)

ERiFt ®

where ¢V € R", y¥ € R", L € R™", F € R"™,

The space normal to the active constraints can be interpreted as the image of the linear transformation
F:R" — R", denoted as Im(F), with dimension m < n. On the other hand, the space tangent to the active
constraints is the kernel of F', ker(F"), that is, it is the kernel of the linear transformation F : R — R”.
Furthermore, the columns of the matrix Z € R™"~") provide a basis of the tangent space, so that

F'Z =0 (64)

The tangent space R"" is related to the space R” through a linear transformation Z : R"" — R", with
ker(Z) = {0}. It is now possible to claim that the vectors q" that are solution of the system (63) satisfy

F'q" =0 < q" € ker(F") (65)

Fu' = —Lq" <= (Lq") € Im(F) (66)

One is interested in those vectors qV that belong to the kernel of F' and that if the linear transformation
L is applied to them, then they fall into the Image of F. This is illustrated in Fig. 1.

Since ¢V € ker(F"), then one may write a unique linear combination of one basis of the tangent space, i.e.
there is a unique vector tV € R~ for which

q" =7¢" (67)

On the other hand, if Lq" does not have a projection on the space complementary to Im(F) (on the
tangent space), then Lq" € Im(F). From this it follows that if

Z"(L¢") =0 (68)
then it is possible to assure that Lq" € Im(F).
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Fig. 1. Critical condition.

The conditions (67) together with (68) lead to

(Z'LZ)tY =0 (69)
or else
Lt =0 (70)

From the above it follows that those vectors ¢V € R", which satisfy Egs. (65) and (66) can be obtained with
a linear transformation (67) from ker(L,). This matrix L, is the projection of the Hessian of the Lagrangian
on the tangent space, and may be seen as a linear transformation from R~ — R""=") This is illustrated in
Fig. 2.

The solution of ker(A) in Eq. (63) can be written as

()=l o

where the left inverse of F has been denoted by matrix 7, and t" is the critical mode of L,,.

Fig. 2. Components of the critical mode in the tangent space.
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The dimension of ker(A) can vary depending on the transformation L : R* — R" and its projection on
the tangent space. Some specific cases are investigated in the following sections.

6.2. Positive definite Hessian
There are many situations in which, for a small value of the control parameter A, then L is positive
definite. This means that the bilinear form Z(v, v)
L(v,v) = (v,Lv) =vILy >0 W#0cR" (72)

is always positive for any non-zero vector v € R". Any non-zero vector that belongs to the tangent space can
be written in the form

v=17t if veker(F) (73)

where t £ 0 and t € R"™ since the columns of Z are a basis in the tangent space.
Next, if the vectors of the tangent space defined in Eq. (73) are presented in the bilinear form (72) one gets

I(Zt,Zt) =t"ZLZt >0 Vtc R"™

— 4T n—m (74)
tt)=t'Lt>0 VteRr

It is possible to conclude that if L € R™" is positive definite, its projection on the tangent space, L,, is also

positive definite. Thus, the kernel of (L,) is a null vector and this implies that A is not singular. Thus, any
equilibrium state in which L is positive definite is a normal state (not critical).

6.3. Positive semi-definite Hessian
The Hessian of the Lagrangian is positive semi-definite if

Ix#0, xER L (X,Xx)=x'Lx=0

T (75)
YW#x, VveER L (v,v)=vLv>0
for non-zero vectors x and v.
The directions x minimize the bilinear form, so they should satisfy the condition
Lx=0 (76)

i.e., x € ker(L). Tt is possible to show that the eigenvalues of L are non-negative, and that the eigenvectors
associated to zero eigenvalues constitute a basis of ker(L).
There are two cases of interest: first, consider the condition

{ker(L) Nker(F")} =@
If for any vector x € ker(L), the condition
F'x #0 (77)

is satisfied, then it is possible to conclude that x does not belong to the ker(F"); i.e. there is no t € R"~ that
satisfies

x =7t (78)
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From Egs. (77) and (75) it follows that for any t € R" the bilinear form (72) becomes
Lt t) =Lt >0 VteR"™

This situation is similar to what was observed in the previous case, and A is non-singular so that the state is
a normal point.
Second, consider the condition

{ker(L) Nker(F")} # @ (80)
Any vector x € R", that belongs to the ker(L), i.e.
Lx =0 (81)

and at the same time x € ker(F")
F'x=0 (82)
leads to the following solution of Eq. (63):

(£)-{3

Thus, matrix A is singular and the minimum dimension of ker(A) is the dimension arising from the in-
tersection between ker(L) and ker(F"). But this is only a condition of minimum dimension, since it is
possible to obtain solutions of Eq. (71) that are not coincident with (83) because L, becomes singular. In
fact, whenever the conditions (81) and (82) are satisfied, it is possible to say that there are vectors t* € R"™"
for which

x = Zt' (84)

and which generate a subspace in R"™™.
From Eq. (75) the following conclusions are obtained:

o For all t° that belongs to the subspace of R"~" generated by t* according to Eq. (84), then
WZt°, Z4°) = TZLZ = 0
(0, €) =t"L,t" =0

Fig. 3. The singularity condition.
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e For t that does not belong to the subspace of R~ generated by t* according to Eq. (84), then
L(Zt,Zt) = t"ZLZt > 0
(86)
L(t,t) =t'L,t >0

so that L, is positive semi-definite.
The conditions that arise when L is singular are shown in Fig. 3.

7. lNlustrative examples

To better understand the developments presented in this paper, two link models, originally studied by
Burgess (1971a), are considered in this section.

7.1. System with two constraints

The first model is shown in Fig. 4 together with the notation employed in the analysis. The model has pin
joints which allow rotation of the links in the plane of the drawing. In the unloaded state the springs are free
of forces and the displacements at B and C are given by Oy = d/2 and O, = d/4.

There are two constraints located at a distance d from line AD, with d < L. The constraints of this
problem may be written in terms of two linear inequalities:

F'=—-d+0,<0
F?=—-d+0,<0

The total potential energy of the structural system results in

k 3 9 i 3
V=35 501 — 8010, + 503 —5Qud ~ 3Q1d+Ed2 - A<2Q§ —20,0, +20; —gdz)} 4+

For the system without constraints (in which case both F' and F? are negative) the equilibrium condi-
tions are V* = 0, leading to the solution of the associated holonomic system

Fig. 4. Two degree of freedom link model with two constraints: (a) unloaded system and (b) loaded configuration.
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3 (A=2) 3 1
Q=290 3G-1 270 u-

For stability both the determinant |V};| and the principal minor ¥;; should be positive, and this is satisfied
only for values of 4 < 1. This solution has three equilibrium path, of which one is stable and two are
unstable.

(a) Before stability is lost, Q; reaches its limit value Q) = d at 1 = 0.56 and Q, = 0.69d. For values of
A > 0.56 the systems has active constraints and the present theory needs to be applied. For the system with
one active constraint, 1 > 4, = 0.56, the equilibrium conditions are

Al R akv] | A R e S O B

Fle—=d+0,=0 1, >0

The solution is given by

(%) k30— A)(h— A)

Q=—digoy mETdE e g

where 4, =0.56 and A, =2.70. Notice that the Lagrange multiplier is non-zero only in the range
1 <A<10/4.

(b) For 4 =7/4, then Q, = d and pu, = (9/4)kL’d, and there are two active constraints. The equilibrium
state for which both constraints are active for the first time is defined by

7 9 k
Or=0=d l=7 m=dy

The Kuhn-Tucker conditions become
, 3
k1 (5=20) (-44+1)]|[ 0O k| —%5 1 0 _
E{(—4+z) -2\ 0 T2 gty =0

F'=0,-d=0 FP=0,-d=0

k 1 k 7

Burgess (1971a) obtained analytical results for this problem; however, a perturbation solution is
discussed in this section to illustrate the formulation developed. The solutions are obtained for equili-
brium paths emerging from the following three states E; (at 4; = 0.56), Ec (at 4; = 1) and E, (at 4, =
7/4).

7.1.1. Analysis of the equilibrium state E;
Let E; be the state given by

W=05 OF=0=d =0
F'=0 F’<0
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The first-order perturbation system is

k { 3.886 —3.443}
L=V=—
L?| —3.443 3.886
k (—1.31
l=d— F'={1 0
LZ{—0.38} { }

The computations specified in Section 3 are carried out at the equilibrium states £; and yield the per-
turbation approximation up to the second-order

Q — QEl +SqE1 +%S2qu
o= st 5

) El El SEl
=1 +sA + %Sz/l

with

. 0 . 0 . 0 Eo.
7 =dl . g=di di? 1, = +1.64668 — dJ,
i { +0.09779 } i { 0.09779 } * { 0.1006554 } f iE

fiy = 75d(1.646697 + 0.150983 )

7.1.2. Analysis of the equilibrium state Ec
Let Ec be the equilibrium state given by

=1 0f=d, 05=3 i=3%d F'=0, F’<0
In a related system without any constraints, this state would be classified as critical.
The first-order perturbation system takes the form

v _k[3 -3
LZV‘E{—s 3]

The matrix of the coefficients of L is singular, and the critical mode associated to the eigenvalue is
x" = {1, 1}. Next, one must investigate if this eigenvector belongs to the tangent space with active con-
straints, using the condition included in Eq. (7)

F'x = {1 0}{}}:17&0

Because the result is not zero, then one gets the surprising result that x does not belong to the tangent space
and as such the state is not critical but it is a normal point.

The following computations are next obtained to evaluate the unknowns in the perturbation approxi-
mation:
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={1 0} FTZ_o—»Z_{(l)}

Lp:ZTLZ—>Lp_E3
3
k)3 T 1\ &
1: E 1 5 ZPZZI—>IPZ—<—>Ed
2
0 0 1
Lpt_—lpﬂtzgd

1
. k. _(_)
a=Lg+ 11— a=—dA 2
L? n 1
2
. . 7\ k.
Fi=—-a—p :+<Z>Edl

The second-order perturbation system requires

1
g _ka) ( 6)
1
)
/=0
Under the present formulation the solution of the intermediate equations are
F'Fir=—f"—i=0

1
1 _ 7Tl 1 _ 12
lp—Zl—>lp——() —di
Ltlllﬂll< )diz
i=rivd i ()i (5)ai

- di?
qZZ'i+Fh—>éj:d/1{ }HM{

+
QU
~
|
N
= WD
"

A= O] —

O — O
—

. k
a:Lé]'—i—li—l—ll—wz:id
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)
Fii=—a— ji, = Lkz (/1+ ,12>
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With the previous results, the second-order perturbation approximation emerging from Ec may be
written as

0 = 0% +5¢" + 374"

E- .Ec~ ..E,

= 1+ s + 35700

Ay =25 sife 4 L jFe
The solution shows that the equilibrium state Ec is a critical state of the associated holonomic system,
and is a singular point of the Hessian of the Lagrangian; however, the non-holonomic system shows a
behavior that is characterized as a normal point. This is due to the fact that the critical mode of the
holonomic system (in this case it is the critical model of the Hessian of the Lagrangian) has a non-zero

projection on the gradient of the active constraints. Thus the constraints have the effect of stiffening the
system.

7.1.3. Analysis of the equilibrium state E,
Finally, let £, be the equilibrium state given by

=1 Of=d Q5=d, pf=2%d y5=0 F =F=0

4

The first-order perturbation system is given by

3

9
AR k-1 10
= — 4 — T _
L=vV=r| 2 1_dL2{_1} F _[0 1}
2

The solution of the first-order system is

_9
4

. . k1)
F'Z=0—-Z=0 ¢=0 u:dﬁ{l}i

For the second-order system one gets

. n k1]
g=20 ,u:sz{l}i

With the previous results, the second-order perturbation approximation emerging from E, is
0=0"+5¢" +35¢" = up + i + 5007 A=+ 507 445705

The equilibrium paths of this example are plotted in Fig. 5, which is in agreement with Fig. 3 of the paper
by Burgess (1971a). The solutions obtained from the system of perturbation equations are consistent with
the observation that the only two degrees of freedom of the system have constraints in the final state
analyzed. Thus, there is only one evolution of the Lagrangian multipliers associated to the support con-
ditions.

7.2. System with one constraint

A second example considered by Burgess (1971a) is studied in this section under the present formulation.
The system, shown in Fig. 6, is formed by rigid links joined by springs. The kinematic relation between the
degrees of freedom O, and Q; and the deformation of the springs is assumed as nonlinear. There is one
control parameter 4 = PL/k, where P is the compression along the axis AD, and £ is the elastic constant of
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Fig. 5. Equilibrium paths for the model of Fig. 4. Key: (—) stable path; (---) unstable path.

Fig. 6. Two degree of freedom link model with one constraint: (a) unloaded system and (b) loaded configuration.

the linear torsional springs. In the initial configuration, the position of the joints is given by
0, = 01 = (1/2)d and the springs do not have initial loads.
The total potential energy becomes

1 1
V= % 501 = 8010> +50; —d(02 + Q1) + 54" — A<2Q% — 2010, + 203 - de)]
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There is only one constraint in this problem, given by

F'=-2d+ Q1+ 0,<0

Before the constraint F!' becomes active, the system behaves as holonomic and the equilibrium path is
governed by

Along the initial path the solution is valid for 0 < 4 <0.5. Critical states of the holonomic system are given

by
5-24 —4+2|fx| _JO
44+ 5-22|lx[ 10
and yield two distinct critical states JO =1withx;=1,x=1;and 12 =3 withx; =1, x, = —1.

For /4 = 0.5 the constraint F! = (0 becomes active. A plot of the equilibrium paths in this problem is
shown in Fig. 7.

7.2.1. Analysis of the equilibrium state C,;
The parameters that define the critical state of the associated holonomic system C; are

c C C 1 k
AC p— p— p— p— ]_
/L,l_l I = l_d7 lull__d_z’ F _O

’ 1 2

7 %

L T Ty

Fig. 7. Equilibrium paths for the model of Fig. 6. Key: (—) stable path and (---) unstable path.
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The Hessian of the Lagrangian at this state is
v k[3 =3
L=V=r {—3 3 }

Because in this problem the constraints are linear in the displacements, then the singularity condition of
the Hessian of the Lagrangian L;; are the same as the singularity of the the energy ¥; for the associated
holonomic system. Thus, matrix A of the perturbation systems may become singular depending on the
critical mode of the associated holonomic system.

The active constraints define the following normal and tangent spaces

F'={1 1} FTZOHZ{_ll}

The critical mode of the associated holonomic system does not belong to the tangent space because the
following dot product is not zero:

F'xC =240
The projection of the Hessian of the Lagrangian on the tangent space is

k
L =2"LZ—L,= 125

Since this L, is positive definite, it is possible to say that matrix A of the perturbation system is non-sin-
gular, and thus the critical state of the associated holonomic system is a normal point of the non-holonomic
system.

To compute the perturbation approximation the load vector is

k-1
o {0

The projection on the tangent space is
1,=2"1=0

Finally, the solution of the perturbation analysis yields
01=0=d
J=1+s19+ %szﬂtcl

where

k. k.
'l:lcl == dﬁj,c] and ﬂcl == dﬁﬂcl

7.2.2. Analysis of the equilibrium state C,
The parameters that define the critical state of the associated holonomic system C, are

5 k
C C: C: C: 1
Ar=3 0r=07=d u’ __idL_z FF=0
The Hessian of the Lagrangian at this state is

R e
L:V_U{—l —1}
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The active constraints define the following normal and tangent spaces

F'={1 1} FTZOHZ{_II}
The critical mode of the associated holonomic system belongs to the tangent space because the following
dot product is zero:

F'x©2 =0

Matrix A of the perturbation system is singular and the critical state of the associated holonomic system
is also a critical state in the non-holonomic system. The critical mode of the non-holonomic system is

IRt

To compute the perturbation approximation the load vector is

k{—1
1—a:{ 1}

To classify the critical state, one has to look at the dot product of the critical mode of the non-holonomic
system and the load vector of the perturbation system. This is

q",1)=0

Because the load vector is orthogonal to the critical mode, then this critical state is a bifurcation in the non-
holonomic system.

8. Conclusions

The classification of distinct critical states of equilibrium has been presented in this paper for non-
holonomic structural systems. The classification takes into account the equilibrium paths that pass through
such states. The procedure employs a regular perturbation expansion at the critical state in order to find an
approximation to the secondary equilibrium path emerging from the critical state. This path is valid as long
as the conditions of constraints do not change in the system; this is a limitation for the range of validity of
the secondary path, but not for the classification of the critical point itself.

The study presented the conditions required for limit and bifurcation states. The conditions are similar to
what is obtained in holonomic systems, and involve the generalized load term and a subvector associated to
the displacements in the rigid mode of the matrix of coefficients of the systems of perturbation equations.

It was also possible to isolate the conditions required for different types of bifurcation (asymmetric and
symmetric with positive and negative curvature of the emerging path). If the constrains are passive, then the
expressions reduce to their counterpart in the holonomic system (Flores and Godoy, 1992; Godoy, 2000).

One of the features of the formulation is that the conditions of critical state have been related to the
properties of the Hessian of the Lagrangian. The study led to the form of the null space of the matrix of the
coefficients of the perturbation systems by employing the null spaces of the Hessian of the Lagrangian and
its projection on the tangent space to the active constraints. A detailed analysis of the bilinear forms as-
sociated to the Hessian of the Lagrangian is also presented. The connections between the properties of the
Hessian of the Lagrangian and the type of bifurcation point may also be explained as when normal forms
are obtained in local bifurcation analysis.

From this research, it follows that the form of the equilibrium paths that pass through a critical state in a
system with constraints in the displacement field are the same as in systems without constraints whenever
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there is only one control parameter. The topic of imperfection sensitivity has not been addressed in this
paper, but it is seen as an important topic for future research.
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