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Abstract

This paper presents a new formulation for the elastic stability of static non-holonomic structural systems. The theory

is developed within the tradition of discrete (or discretized) systems written in terms of a set of generalized coordinates

and control parameters. The non-holonomic conditions are written as constraint functions. The formulation employs a

Lagrangian functional in terms of the total potential energy, the constraint functions and multipliers. Critical states are

identified and the solution is next expanded by regular perturbations. This allows to establish a classification of critical

states and identify the initial postcritical behavior. This solution is valid provided that there is no change in the active

constraints of the system. The paper presents a mathematical analysis of the critical condition, and concludes with

simple examples of two degree-of-freedom systems previously investigated by other authors.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The objective of this paper is to extend the general theory of elastic stability of time independent, discrete

structural systems to problems in which there are constraints in the displacement field. Such systems are

known as ‘‘non-holonomic’’, and arise in cases in which a new boundary is reached as a consequence of the

deformation of the structure (a late boundary condition), and in systems that can only deflect in a given
direction (one-way systems).

Problems involving non-holonomic systems that buckle under static loads are common in engineering

practice and research. The buckling of perfect and imperfect elastic rings in a cavity under hoop com-

pression was studied by Bucciarelli and Pian (1964), Hsu et al. (1964), Zagustin and Herrmann (1967), and

El-Bayoumi (1972). Burgess (1971a) considered imperfect rings in a circular cavity under uniform com-

pression, and showed that there is a critical imperfection amplitude for which buckling may be modeled as a

bifurcation. For imperfections smaller than the critical one, the ring recovers the circular shape, while for

larger imperfections there is a limit point behavior. Concentric rings or cylinders with different stiffness were
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investigated by Kyriakides (1986). Kyriakides and Youn (1984) concluded that rings in a rigid cavity with a

local pressure in the zone enclosed by an inward geometric imperfection display a limit point behavior. This

work was extended by Li and Kyriakides (1990, 1991) to investigate buckling propagation in pipelines in a

rigid cavity.
An interest in extending the general theory of elastic stability to deal with non-holonomic problems is

found, for example, in the works of Burgess (1969, 1971b), Klarbrig (1986), and Godoy (1987).

The basis of the stability theory of structures were laid by the pioneer works of Euler and Lagrange, but

what is known at present as the ‘‘general theory of elastic stability’’ under static loads was initiated by

Koiter (1945) for continuous systems (see also Como and Grimaldi, 1995). This theory is classified as

‘‘general’’ in the literature partly because of its nonlinearity, but also because it may deal with classes of

problems rather than with solutions to specific structural configurations. A recent account of the evolution

of the theory may be found in Godoy (2002).
The theory was later formulated for discrete structural systems, and is summarized in a number of books,

such as Croll and Walker (1972), Thompson and Hunt (1973), Britvec (1973), Huseyin (1975), El-Naschie

(1990), Godoy (2000). An energy formulation is employed in those books and the derivatives of the energy

at the critical state are used to produce the general conditions for bifurcation or limit point behavior, and

the sensitivity of the critical state. The approach described above employs static bifurcation analysis to

investigate instability. Other approaches to buckling attempt to explain the phenomenon using local

analysis of bifurcation points, in terms of a pitchfork bifurcation or in terms of saddle-node bifurcation

(Wiggins, 1990; Nayfeh and Balachandran, 1995).
Some progress has been obtained to consider non-holonomic systems with theoretical generality. Burgess

(1969, 1971b) established conditions to identify a critical state in non-holonomic systems. Klarbrig (1986)

considered the problem of equilibrium, uniqueness and stability of nonlinear discrete systems with uni-

lateral contact. Finally, the identification of conditions for regular and critical states was studied by the

authors (Mirasso and Godoy, 1992, 1997).

The above contributions have concentrated on the assessment of static stability of an equilibrium state.

However, a complete classification of critical states, the relation between an equilibrium path and its sta-

bility, and information about the initial postcritical behavior of the system, is still lacking. Those are the
specific objectives of this paper.

A summary of previous work in this field carried out by the authors is briefly discussed in Section 2. The

classification of critical states is developed in Section 3. Section 4 contains the different possibilities of

bifurcation behavior, while the results for limit point behavior are discussed in Section 5. A mathematical

analysis of the conditions of critical states is presented in Section 6. Simple link models, previously studied

by Burgess (1971a), are solved using the approach presented in this work. Concluding remarks are made in

Section 8.

2. Summary of previous work

In a previous paper (Mirasso and Godoy, 1997) the authors formulated the conditions of a critical state

in non-holonomic systems by means of constraint functions in terms of the displacements, which are

formulated together with the total potential energy of the structure (Burgess, 1971a). The structure is

modeled by means of nonlinear kinematic and elastic constitutive equations.

The total potential energy V ðQi; kÞ is written in terms of the generalized coordinates Qi and the load

parameter k. Due to the kinematic nonlinearity the energy becomes quartic in the generalized coordinates

and linear in the load parameter. The set of constraints z are grouped in a vector F Z with components
affecting the displacements Qi, and may be written in the form
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F ZðQiÞ ¼ 0 for Z ¼ 1; . . . ; z ð1Þ
The constraints may be active or passive. Active constraints are those for which

F aðQ0
i Þ ¼ 0 for a ¼ 1; . . . ;m ð2Þ

in which m is the number of active constraints. Passive constraints satisfy the condition

F pðQ0
i Þ < 0 for p ¼ 1; . . . ; ðz� mÞ ð3Þ

where Q0
i are the values of the generalized coordinates of a possible configuration of the system. The

Lagrangian functional L is defined as

LðQi; k; lZÞ ¼ V ðQi; kÞ þ lZF
ZðQiÞ ð4Þ

where lZ are Lagrange multipliers.

This led to equilibrium conditions in terms of variational inequalities, which were written in the form of

Kuhn–Tucker conditions (see, for example, Arora, 1990)

oL
oQi

¼ Li ¼ Vi þ lZF
Z
i j

E ¼ 0

lZ j
E P 0;

oL
olZ

¼ F ZðQiÞjE 6 0

lZF
ZðQiÞjE ¼ 0

ð5Þ

where the notation ð Þi ¼
oð Þ
oQi

when it is applied on V , F or L; and ð ÞjE indicates that the variables to the left

are evaluated at an equilibrium state E. The Einstein convention has been used to indicate summation on

the whole range of variables, except on the complementarity condition lZF
ZðQiÞjE ¼ 0. An equilibrium

state in this problem is provided by a set of displacement coordinates Qi and load parameter k that satisfy
Eq. (5).

Next, a perturbation analysis is carried out to investigate the uniqueness of the solution and to distin-

guish between regular and critical states. The variables in Eq. (5) are expanded in the form

QiðsÞ ¼ QE
i þ _qqEi sþ 1

2
€qqEi s

2 þ � � �
kðsÞ ¼ kE þ _kkEsþ 1

2
€kkEs2 þ � � �

lZðsÞ ¼ lE
Z þ _llE

Zsþ 1
2
€llE
Zs

2 þ � � �
ð6Þ

where qi ¼ Qi � QE
i is an incremental displacement measured from the equilibrium state; and a dot on top

of a variable indicates a derivative with respect to the perturbation parameter s. The perturbation pa-
rameter may be a component of the displacement vector or any other scalar quantity that takes a nonzero

value along the path being described. The notation of small qi is used to identify increments in the dis-

placement field (not total displacements), as in Thompson and Hunt (1973).

Substitution of Eq. (6) into (5) leads to the set of perturbation equations of order p

L F

FT 0

� �
qðpÞ

lðpÞ

� �
þ kðpÞ l

0

� �
þ lp�1

fp�1

� �����
E

¼ 0

0

� �
ð7Þ

where matrix L is the Hessian of the Lagrangian L; the columns of matrix F are the gradient of the active

constraints F a, where the space of active constraints is Rm; qðpÞ 2 Rn, kðpÞ 2 R, lðpÞ 2 Rm are the unknowns in

the perturbation system of order p. For example, in the first-order perturbation system one has qðpÞ ¼ _qqE,
lðpÞ ¼ _llE, and kðpÞ ¼ _kkE. The terms lp�1 and fp�1 are obtained from the solution of the perturbation equation
of order ðp � 1Þ. Vector l contains the derivatives of the gradient of the Lagrangian Li with respect to the

control parameter k and its components may be written as
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li ¼
oLi

ok
¼ oðVi þ lZF

Z
i Þ

ok
¼ V 0

i

Because lZ and F Z
i are not explicit functions of k, then

li ¼
oVi
ok

¼ V 0
i ð8Þ

Thus, l is the vector of generalized loads of the associated holonomic system. The notation ð Þ0 ¼ oð Þ
ok has

been used in Eq. (8).

For a non-holonomic system, the conditions required to reach a critical state are obtained from Eq. (7),

which may also be written as

AdðpÞ þ kðpÞ l

0

� �
þ lp�1

fp�1

� �����
E

¼ 0

0

� �

where the general matrix A is

A ¼ L F

FT 0

� �
ð9Þ

and the vector of unknowns is

dðpÞ ¼ qðpÞ

lðpÞ

� �
ð10Þ

This matrix A is associated to the critical states of a non-holonomic system and is analyzed below.

3. Classification of critical states

A system is said to be at a critical state if its matrix A is singular at a given load level. This means that at a
critical state there are vectors qN 2 Rn and lN 2 Rm that are not simultaneously zero, so that

L F

FT 0

� �
qN

lN

� �����
C

¼ 0

0

� �
ð11Þ

or else

AdN jC ¼ 0 with dN ¼ qN

lN

� �
ð12Þ

The notation ð ÞjC indicates that the variables to the left are evaluated at the critical state.
Vector dN , or its subvectors, constitute a basis in the kernel of matrix A, i.e. they are the eigenvectors of

this matrix associated to a zero eigenvalue. The studies of this paper are restricted to distinct critical states,

in the sense that there is only one zero eigenvalue and the dimension of kerðAÞ is 1.
The general solution of Eq. (7) can be written as the sum of particular solutions plus the solution of the

homogeneous system (11)

qðpÞ

lðpÞ

� �
¼ ap

qN

lN

� �
þ kðpÞ q0

l0

� �
þ qP

lP

� �����
C

ð13Þ

where ap is a parameter used to scale the eigenvectors dN , and the two other vectors are obtained from the
solution of the following systems:
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L F

FT 0

� �
q0

l0

� �����
C

¼ � l

0

� �C

ð14Þ

L F

FT 0

� �
qP

lP

� �����
C

¼ � lp�1

fp�1

� �C

ð15Þ

The complete solution of the system is obtained in two steps: First, the independent terms in the system
(7) must belong to the image of matrix A. Since the image of A and the kernel of AT belong to comple-

mentarity (orthogonal) spaces, then the independent terms of systems (7) must be orthogonal to the basis of

the kernel AT. Since A ¼ AT, then kerðATÞ ¼ kerðAÞ and is given by the non-zero solution of the homo-

geneous system (11). Thus, the following is obtained:

qN

lN

� �
; kðpÞ l

0

� ���
þ lp�1

fp�1

� ��	
¼ 0 ð16Þ

where h ; i indicates a scalar product. From the above condition, one gets

kðpÞhqN ; li þ hqN ; lp�1i þ hlN ; fp�1i
��C ¼ 0 ð17Þ

This is the contraction mechanism identified by Thompson and Hunt (1973) for holonomic systems and

allows to obtain kðpÞC. This contraction mechanism plays the same role as Fredholm�s alternative and

solvability conditions used by other authors (see Nayfeh, 1981, pp. 456).

Second, the choice of the perturbation parameter leads to a new condition. It is possible to choose any

component of q as the perturbation parameter s. Without loss of generality, it is possible to choose the ith
component of q, i.e.

s � qi ð18Þ
Then

qðpÞi ¼ dip ð19Þ
where dip is the Kronecker delta function. Considering Eq. (13), one has

dip ¼ apqNi þ kðpÞq0i þ qpi ð20Þ
The value of the parameter ap depends on the particular solution chosen for the systems (14), and on the

way in which the eigenvector of A was computed. If one assumes

qNi ¼ 1 and q0i ¼ qpi ¼ 0 ð21Þ
then

ap ¼ dip ð22Þ
Other valid choices can be made provided s is taken as an adequate parameter to follow the equilibrium

path. If a component q1 is taken as perturbation parameter, then the eigenvector qN should not have a zero

value in this generalized coordinate.

As seen before, the contraction mechanism is applied to the system (7) and yields Eq. (17). In order to

classify the critical states it is necessary to analyze the above Eq. (17).

The coefficient hqN ; lijC is crucial for the classification of critical states. If

hqN ; lijC 6¼ 0 ð23Þ
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then the state C is a limit point, and from Eq. (17) one can compute

kðpÞC ¼ � hqN ; lp�1i þ hlN ; fp�1i
hqN ; li

����
C

ð24Þ

On the other hand, cases in which

hqN ; lijC ¼ 0 ð25Þ

are bifurcation states. These statements will be examined in the next sections of the paper.

Notice that qN is the part of the generalized displacements in the critical mode associated to matrix A.

Furthermore, vector l is the generalized load applied to the system.

The conditions (23) and (25) are the projections of the vector of generalized loads, l, in the direction of

the critical mode, qN . This is analogous to the interpretation that is made in the general theory of holonomic

systems.

4. Bifurcation states

Let us consider a distinct critical state C, in which the orthogonality condition (25) holds true. Then

ðqNi L0
iÞj

C ¼ 0 ð26Þ

The first system of perturbation equations is given by

Lij F a
i

F a
j 0

� �
_qqj
_lla

� �
þ _kk

L0
i

0

� �����
C

¼ 0

0

� �
ð27Þ

where i; j ¼ 1; n and a ¼ 1;m. If the contraction mechanism is applied to Eq. (27), then one gets

_kkðqNi L0
iÞj

C ¼ 0 ð28Þ

This is valid for any value of _kk, on account of Eq. (26).

The solution of the first system of perturbation equations can be written in the form

_qqj
_lla

� �
¼ a1

qNj
lN
a

� �
þ _kk

q0j
l0
a

� �����
C

ð29Þ

where q0j and l0
a are the particular solutions of Eq. (14).

The second system of perturbation equations is given by

Lij F a
i

F a
j 0

� �
€qqj
€lla

� �
þ €kk

L0
i

0

� �
þ l1j

f 1
a

� �����
C

¼ 0

0

� �
ð30Þ

where

l1Ei ¼ Lijk _qqj _qqk þ L00
i
_kk2 þ 2ðL0

ij _qqj _kk þ F Z
ij _qqj _llZÞ

f 1E
a ¼ F Z

ij _qqi _qqj
ð31Þ

Application of the contraction mechanism and taking Eq. (26) into account yields

ðqNi l1i Þ þ ðlN
a

1
aÞj

C ¼ 0 ð32Þ

so that Eq. (30) has a solution.
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The solution of the first system of perturbation, Eq. (29), is substituted into Eq. (32), and yields

_kk2 þ _kka1 þ a2
1j
C ¼ 0 ð33Þ

where

¼ LijkqNi q
0
j q

0
k þ L00

i q
N
i þ 2L0

ijq
N
i q

0
j þ 2F Z

ij q
N
i q

0
jl

0
Z þ F Z

ij q
0
i q

0
jl

N
Z

¼ LijkqNi ðqNj q0k þ q0j q
N
k Þ þ 2L0

ijq
N
i q

N
j þ F Z

ij q
N
i q

0
jl

N
Z þ 2F Z

ij q
N
i ðqNj l0

Z þ q0jl
N
Z Þ þ F Z

ij q
0
i q

N
j lN

Z

¼ LijkqNi q
N
j q

N
k þ 3F Z

ij q
N
i q

N
j lN

Z

ð34Þ

This is a quadratic equation in _kk, and there are two solutions, so that there are two equilibrium paths as

expected in a bifurcation.

4.1. Asymmetric bifurcation

The nature of the bifurcation is given by the coefficient . If

6¼ 0 ð35Þ
the following solutions are obtained from Eq. (33):

_kkC ¼ � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�4

p
2

ð36Þ

It was previously assumed that s ¼ q1, so from Eq. (22) one gets a1 ¼ 1. The larger of the roots of _kkC

corresponds to the slope of the fundamental equilibrium path, while the other root is the slope of the

secondary equilibrium path.

A first-order perturbation solution has been obtained for the secondary equilibrium path passing through

the asymmetric bifurcation, and may now be written as

Qiðq1Þ ¼ QC
i þ _qqCi q1 þ � � �

kðq1Þ ¼ kC þ _kkCq1 þ � � �
laðq1Þ ¼ lC

a þ _llC
a q1 þ � � �

ð37Þ

with

_qqCi ¼ qNi þ _kkCq0i
_llC
a ¼ lN

a þ _kkCl0
a

ð38Þ

This solution is valid provided

F pðQC
i Þ þ ðF p

i _qqiÞ
Cq1 6 0

laðq1ÞP 0
ð39Þ

are satisfied.

4.2. Symmetric bifurcation

The condition for symmetric bifurcation is

¼ 0 ð40Þ
in which case the quadratic equation (33) has one zero solution

_kkC ¼ 0 ð41Þ
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while the other root is the slope of the fundamental path. The solution of the first-order system of per-

turbation equations is obtained in conjunction with Eqs. (29) and (41), leading to

_qqCi ¼ a1qN1
_llC
a ¼ a1l

N
a

ð42Þ

Eqs. (42) are substituted into Eq. (31) and yield

l1i ¼ ðLijkqNk q
N
j þ 2F a

ijq
N
j lN

a Þa2
1

f 1
a ¼ ðF a

ijq
N
i q

N
j Þa2

1

ð43Þ

Thus, the general solution of the second system can now be written as

€qqi
€lla

� �
¼ a2

qNi
lN
a

� �
þ €kk

q0i
l0
a

� �
þ q2i

l2
a

� �����
C

ð44Þ

where q2i and l2
a are particular solutions of

Lij F a
i

F a
j 0

� �
q2i
l2
a

� �
¼ � l1i

f 1
a

� �����
C

ð45Þ

where l1i and f 1
a are given by Eq. (43).

To compute the value of €kk one must use the contraction mechanism on the third-order perturbation

equation, i.e.

Lij F a
i

F a
j 0

� �
vqi
vla

� �
þ vk

L0
i

0

� �
þ l2i

f 2
a

� �����
C

¼ 0

0

� �
ð46Þ

where

l2Ei ¼ Lijk1 _qqj _qqk _qql þ 3½Lijk _qqj€qqk þ L000
i
_kk3� þ 3fL0

ijk _qqj _qqk _kk þ L0
ij€qqj _kk þ L00

ij _qqj _kk
2 þ L00

i
_kk€kk þ L0

ij _qqj €kk

þ F Z
ijk _qqj _qqk _llZ þ F Z

ij €qqj _llZ þ F Z
ij _qqj€llZg

f 2E
Z ¼ 3F Z

ij _qqi€qqj þ F Z
ijk _qqi _qqj _qqk

ð47Þ

This leads to

ðqNi l2i Þ þ ðlN
a

2
aÞj

C ¼ 0 ð48Þ
Next, the solution of the first system of perturbation equations (42) and the second system (44) are

introduced into Eq. (47), so that Eq. (48) becomes

€kkC þ jC ¼ 0 ð49Þ
from which

€kkC ¼ � ð50Þ

with

¼ 3
2

a1

¼ a3
1½LijklqNi q

N
j q

N
k q

N
l þ 4F Z

ijkq
N
i q

N
j q

N
k lN

Z � þ 3a1½LijkqNi q
N
j q

2
k þ 2F Z

ij q
N
i q

2
jl

N
Z þ F Z

ij q
N
i q

N
j l2

Z � þ 3a1a2

ð51Þ
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The second-order perturbation solution is now given by

Qiðq1Þ ¼ QC
i þ _qqNi q1 þ 1

2
q2i €qq

C
i þ � � �

kðq1Þ ¼ kC þ 1
2
q21 €kk

C þ � � �
laðq1Þ ¼ lC

a þ _llN
a q1 þ 1

2
q21€ll

C
a þ � � �

ð52Þ

with

€qqi
€lla

� �
¼ €kk

q0i
l0
a

� �
þ q2i

l2
a

� �����
C

ð53Þ

This solution is valid for

F pðQC
i Þ þ ðF p

i _qq
N
i Þ

Cq1 þ ðF p
i €qqi þ F p

ij _qq
N
i _qq

N
j Þ

C q21
2

6 0

laðq1ÞP 0

ð54Þ

Notice that the relation between the coefficients and given by Eq. (51) is also present in the theory of

holonomic systems.

5. Limit points

A limit point is a critical point in which the generalized load vector L0
i has a non-zero component in the

direction of the critical mode qNi , i.e.

ðqNi L0
iÞj

C 6¼ 0 ð55Þ

The contraction of the first system of perturbation equations, together with Eqs. (28) and (55), lead to

_kkC ¼ 0 ð56Þ
so that the first system of equations has a solution. The first-order solution is completed with

_qqj ¼ a1qNi
_lla ¼ a1l

N
a

ð57Þ

Notice that these values are in coincidence with the first-order solution of the symmetric bifurcation. The

independent term of the second-order perturbation condition is given by Eq. (42). The contracted form of

the second-order perturbation conditions (Eq. (30)) leads to

ðqNi L0
iÞ€kk

C þ ðqNi l1i Þ þ ðlN
a

1
aÞj

C ¼ 0 ð58Þ

The value of €kkC can be computed from this expression in the form

€kkC ¼ � a2
1

ðqNi L0
iÞ

ð59Þ

where is the coefficient defined in Eq. (34). The second-order solution is completed with Eq. (44), i.e.

€qqi
€lla

� �
¼ a2

qNi
lN
a

� �
þ €kk

q0i
l0
a

� �
þ q2i

l2
a

� �����
C

ð60Þ

where ðq0i ; l0
aÞ and ðq2i ; l2

aÞ have already been obtained as the particular solutions of the systems (14) and

(45).
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The postcritical equilibrium path is now given by

Qiðq1Þ ¼ QC
i þ q1 _qqNi þ 1

2
q21ð€kk

Cq0i þ q2i Þ þ � � �
kðq1Þ ¼ kC þ 1

2
q21 €kk

C þ � � �
laðq1Þ ¼ lC

a þ q1 _llN
a þ 1

2
q21ð€kk

Cl0
a þ l2

aÞ þ � � �
ð61Þ

Such expressions are valid as long as the conditions

F pðQC
i Þ þ ðF p

i q
N
i Þ

Cq1 þ ½F p
i ð€kkCq0i þ q2i Þ þ F p

ijq
N
i q

N
j �

C q21
2

6 0

laðq1ÞP 0

ð62Þ

are satisfied. There is a unique postcritical equilibrium path in this problem, with a zero slope at the critical

state and a non-zero curvature. All the expressions written here are reduced to those of the general theory

for holonomic systems whenever there are no constraints in the displacements, or else they are passive.

6. Mathematical analysis of the critical condition

6.1. On the mathematical meaning of the critical state

At a critical state one is interested in the non-zero solutions of the system (7)

L F

FT 0

� �
qN

lN

� �����
C

¼ 0

0

� �
ð63Þ

where qN 2 Rn, lN 2 Rm, L 2 Rn�n, F 2 Rn�m.

The space normal to the active constraints can be interpreted as the image of the linear transformation

F : Rm ! Rn, denoted as ImðFÞ, with dimension m < n. On the other hand, the space tangent to the active

constraints is the kernel of FT, kerðFTÞ, that is, it is the kernel of the linear transformation FT : Rn ! Rm.

Furthermore, the columns of the matrix Z 2 Rn�ðn�mÞ provide a basis of the tangent space, so that

FTZ ¼ 0 ð64Þ
The tangent space Rn�m is related to the space Rn through a linear transformation Z : Rn�m ! Rn, with

kerðZÞ ¼ f0g. It is now possible to claim that the vectors qN that are solution of the system (63) satisfy

FTqN ¼ 0() qN 2 kerðFTÞ ð65Þ

FlN ¼ �LqN () ðLqN Þ 2 ImðFÞ ð66Þ
One is interested in those vectors qN that belong to the kernel of FT and that if the linear transformation

L is applied to them, then they fall into the Image of F. This is illustrated in Fig. 1.

Since qN 2 kerðFTÞ, then one may write a unique linear combination of one basis of the tangent space, i.e.

there is a unique vector tN 2 Rðn�mÞ for which

qN ¼ ZtN ð67Þ
On the other hand, if LqN does not have a projection on the space complementary to ImðFÞ (on the

tangent space), then LqN 2 ImðFÞ. From this it follows that if

ZTðLqN Þ ¼ 0 ð68Þ
then it is possible to assure that LqN 2 ImðFÞ.
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The conditions (67) together with (68) lead to

ðZTLZÞtN ¼ 0 ð69Þ

or else

Lpt
N ¼ 0 ð70Þ

From the above it follows that those vectors qN 2 Rn, which satisfy Eqs. (65) and (66) can be obtained with

a linear transformation (67) from kerðLpÞ. This matrix Lp is the projection of the Hessian of the Lagrangian

on the tangent space, and may be seen as a linear transformation from Rðn�mÞ ! Rðn�mÞ. This is illustrated in
Fig. 2.

The solution of kerðAÞ in Eq. (63) can be written as

qN

lN

� �
¼ Z

� LZ

� �
tN ð71Þ

where the left inverse of F has been denoted by matrix , and tN is the critical mode of Lp.

Fig. 2. Components of the critical mode in the tangent space.

Fig. 1. Critical condition.
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The dimension of kerðAÞ can vary depending on the transformation L : Rn ! Rn and its projection on

the tangent space. Some specific cases are investigated in the following sections.

6.2. Positive definite Hessian

There are many situations in which, for a small value of the control parameter k, then L is positive

definite. This means that the bilinear form ðv; vÞ
ðv; vÞ � hv;Lvi ¼ vTLv > 0 8v 6¼ 0 2 Rn ð72Þ

is always positive for any non-zero vector v 2 Rn. Any non-zero vector that belongs to the tangent space can

be written in the form

v ¼ Zt; if v 2 kerðFTÞ ð73Þ
where t 6¼ 0 and t 2 Rn�m since the columns of Z are a basis in the tangent space.

Next, if the vectors of the tangent space defined in Eq. (73) are presented in the bilinear form (72) one gets

ðZt;ZtÞ � tTZLZt > 0 8t 2 Rn�m

ðt; tÞ � tTLpt > 0 8t 2 Rn�m
ð74Þ

It is possible to conclude that if L 2 Rðn�nÞ is positive definite, its projection on the tangent space, Lp, is also

positive definite. Thus, the kernel of ðLpÞ is a null vector and this implies that A is not singular. Thus, any

equilibrium state in which L is positive definite is a normal state (not critical).

6.3. Positive semi-definite Hessian

The Hessian of the Lagrangian is positive semi-definite if

9x 6¼ 0; x 2 Rn : ðx; xÞ � xTLx ¼ 0

8v 6¼ x; v 2 Rn : ðv; vÞ � vTLv > 0
ð75Þ

for non-zero vectors x and v.

The directions x minimize the bilinear form, so they should satisfy the condition

Lx ¼ 0 ð76Þ

i.e., x 2 kerðLÞ. It is possible to show that the eigenvalues of L are non-negative, and that the eigenvectors

associated to zero eigenvalues constitute a basis of kerðLÞ.
There are two cases of interest: first, consider the condition

kerðLÞ \ kerðFTÞ
� 


¼ Ø

If for any vector x 2 kerðLÞ, the condition

FTx 6¼ 0 ð77Þ

is satisfied, then it is possible to conclude that x does not belong to the kerðFTÞ; i.e. there is no t 2 Rn�m that
satisfies

x ¼ Zt ð78Þ
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From Eqs. (77) and (75) it follows that for any t 2 Rn�m the bilinear form (72) becomes

ðZt;ZtÞ � tTZLZt > 0 8t 2 Rn�m

ðt; tÞ � tTLpt > 0 8t 2 Rn�m
ð79Þ

This situation is similar to what was observed in the previous case, and A is non-singular so that the state is

a normal point.

Second, consider the condition

fkerðLÞ \ kerðFTÞg 6¼ Ø ð80Þ
Any vector x 2 Rn, that belongs to the kerðLÞ, i.e.

Lx ¼ 0 ð81Þ
and at the same time x 2 kerðFTÞ

FTx ¼ 0 ð82Þ
leads to the following solution of Eq. (63):

qN

lN

� �
¼ x

0

� �
ð83Þ

Thus, matrix A is singular and the minimum dimension of kerðAÞ is the dimension arising from the in-

tersection between kerðLÞ and kerðFTÞ. But this is only a condition of minimum dimension, since it is

possible to obtain solutions of Eq. (71) that are not coincident with (83) because Lp becomes singular. In

fact, whenever the conditions (81) and (82) are satisfied, it is possible to say that there are vectors t� 2 Rn�m

for which

x ¼ Zt� ð84Þ
and which generate a subspace in Rn�m.

From Eq. (75) the following conclusions are obtained:

• For all t0 that belongs to the subspace of Rn�m generated by t� according to Eq. (84), then

ðZt0;Zt0Þ � t0TZLZt0 ¼ 0

ðt0; t0Þ � t0TLpt
0 ¼ 0

ð85Þ

Fig. 3. The singularity condition.
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• For t that does not belong to the subspace of Rn�m generated by t� according to Eq. (84), then

ðZt;ZtÞ � tTZLZt > 0

ðt; tÞ � tTLpt > 0
ð86Þ

so that Lp is positive semi-definite.

The conditions that arise when L is singular are shown in Fig. 3.

7. Illustrative examples

To better understand the developments presented in this paper, two link models, originally studied by

Burgess (1971a), are considered in this section.

7.1. System with two constraints

The first model is shown in Fig. 4 together with the notation employed in the analysis. The model has pin

joints which allow rotation of the links in the plane of the drawing. In the unloaded state the springs are free

of forces and the displacements at B and C are given by Q1 ¼ d=2 and Q2 ¼ d=4.
There are two constraints located at a distance d from line AD, with d � L. The constraints of this

problem may be written in terms of two linear inequalities:

F 1 ¼ �d þ Q1 6 0

F 2 ¼ �d þ Q2 6 0

The total potential energy of the structural system results in

V ¼ k
2L2

5Q2
1

�
� 8Q1Q2 þ 5Q2

2 �
3

2
Q2d � 3Q1d þ 9

16
d2 � k 2Q2

1

�
� 2Q1Q2 þ 2Q2

2 �
3

8
d2

��
þ � � �

For the system without constraints (in which case both F 1 and F 2 are negative) the equilibrium condi-

tions are V E
i ¼ 0, leading to the solution of the associated holonomic system

Fig. 4. Two degree of freedom link model with two constraints: (a) unloaded system and (b) loaded configuration.
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Q1 ¼ � 3

4
d

ðk � 2Þ
ðk � 3Þðk � 1Þ Q2 ¼

3

4
d

1

ðk � 3Þðk � 1Þ
For stability both the determinant jVijj and the principal minor V11 should be positive, and this is satisfied

only for values of k < 1. This solution has three equilibrium path, of which one is stable and two are

unstable.

(a) Before stability is lost, Q1 reaches its limit value Q1 ¼ d at k ¼ 0:56 and Q2 ¼ 0:69d. For values of
k > 0:56 the systems has active constraints and the present theory needs to be applied. For the system with

one active constraint, kP k1 ¼ 0:56, the equilibrium conditions are

k
L2

ð5� 2kÞ ð�4þ kÞ
ð�4þ kÞ ð5� 2kÞ

� �
Q1

Q2

� �
þ d

k
L2

� 3

2
þ 3
4

8<
:

9=
;þ l1

1

0

� �
¼ 0

F 1 ¼ �d þ Q1 ¼ 0 l1 P 0

The solution is given by

Q2 ¼ �d
k � 13

4

� �
ð5� 2kÞ l1 ¼ �d

k
L2

3ðk � k1Þðk � k2Þ
ð5� 2kÞ

where k1 ¼ 0:56 and k2 ¼ 2:70. Notice that the Lagrange multiplier is non-zero only in the range

k1 6 k6 10=4.
(b) For k ¼ 7=4, then Q2 ¼ d and l1 ¼ ð9=4ÞkL2d, and there are two active constraints. The equilibrium

state for which both constraints are active for the first time is defined by

Q1 ¼ Q2 ¼ d k ¼ 7

4
l1 ¼

9

4
d
k
L2

The Kuhn–Tucker conditions become

k
L2

ð5� 2kÞ ð�4þ kÞ
ð�4þ kÞ ð5� 2kÞ

� �
Q1

Q2

� �
þ d

k
L2

� 3
2
3
4

( )
þ l1

1

0

� �
þ l2

0

1

� �
¼ 0

F 1 ¼ Q1 � d ¼ 0 F 2 ¼ Q2 � d ¼ 0

l1 ¼ d
k
L2

k

�
þ 1

2

�
P 0 l2 ¼ d

k
L2

k

�
þ 7

4

�
P 0

Burgess (1971a) obtained analytical results for this problem; however, a perturbation solution is

discussed in this section to illustrate the formulation developed. The solutions are obtained for equili-

brium paths emerging from the following three states E1 (at k1 ¼ 0:56), EC (at k1 ¼ 1) and E2 (at k1 ¼
7=4).

7.1.1. Analysis of the equilibrium state E1
Let E1 be the state given by

k1 ¼ 0:56 QE
1 ¼ QE

2 ¼ d lE
1 ¼ 0

F 1 ¼ 0 F 2 < 0
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The first-order perturbation system is

L � V ¼ k
L2

3:886 �3:443

�3:443 3:886

� �

l ¼ d
k
L2

�1:31

�0:38

� �
FT ¼ 1 0f g

The computations specified in Section 3 are carried out at the equilibrium states E1 and yield the per-

turbation approximation up to the second-order

Q ¼ QE1 þ s _qqE1 þ 1
2
s2€qqE1

l1 ¼ lE1
1 þ s _llE1

1 þ 1
2
s2€llE1

1

k1 ¼ kE1 þ s _kkE1
1 þ 1

2
s2 €kkE1

with

_qq ¼ d _kk
0

þ0:09779

� �
; €qq ¼ d €kk

0

0:09779

� �
þ d _kk2 0

0:1006554

� �
_ll1 ¼ þ1:64668

k
L2

d _kk;

€ll1 ¼
k
L2

dð1:64669€kk þ 0:150983 _kk2Þ

7.1.2. Analysis of the equilibrium state EC

Let EC be the equilibrium state given by

k1 ¼ 1 QE
1 ¼ d; QE

2 ¼ 3
4
; lE

1 ¼ 3
4
kL2d F 1 ¼ 0; F 2 < 0

In a related system without any constraints, this state would be classified as critical.

The first-order perturbation system takes the form

L � V ¼ k
L2

3 �3

�3 3

� �

The matrix of the coefficients of L is singular, and the critical mode associated to the eigenvalue is

xT ¼ f1; 1g. Next, one must investigate if this eigenvector belongs to the tangent space with active con-

straints, using the condition included in Eq. (7)

FTx ¼ 1 0f g 1

1

� �
¼ 1 6¼ 0

Because the result is not zero, then one gets the surprising result that x does not belong to the tangent space

and as such the state is not critical but it is a normal point.
The following computations are next obtained to evaluate the unknowns in the perturbation approxi-

mation:
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FT ¼ f 1 0 g FTZ ¼ 0 ! Z ¼ 0

1

� �

Lp ¼ ZTLZ! Lp ¼
k
L2

3

l ¼ d
k
L2

� 3

4

� 1

2

8><
>:

9>=
>;; lp ¼ ZTl ! lp ¼ � 1

2

� �
k
L2

d

Lpto ¼ �lp ! to ¼ 1

6
d

_tt ¼ to _kk ! _tt ¼ 1

6

� �
_kkd

_qq ¼ Z_tt ! _qq ¼ d _kk
0
1

6

� �8<
:

9=
;

a ¼ L _qqþ l _kk ! a ¼ k
L2

d _kk
� 1

2

� �

þ 1

2

� �
8>><
>>:

9>>=
>>;þ k

L2
d _kk

� 5

4

� �

� 1

2

� �
8>><
>>:

9>>=
>>;

F _ll ¼ �a ! _ll1 ¼ þ 7

4

� �
k
L2

d _kk

The second-order perturbation system requires

l1 ¼ k
L2

d _kk2

þ 1

6

� �

� 1

3

� �
8>>><
>>>:

9>>>=
>>>;

f 1 ¼ 0

Under the present formulation the solution of the intermediate equations are

F TF €nn ¼ �f 1 ! €nn ¼ 0

l1p ¼ ZTl1 ! l1p ¼ � 1

3

� �
k
L2

d _kk2

Lpt21 ¼ �l1p ! t21 ¼
1

9

� �
d _kk2

€tt ¼ to €kk þ t21 ! €tt ¼ 1

6

� �
€kkd þ 1

9

� �
d _kk2

€qq ¼ Z€tt þ F €nn ! €qq ¼ d €kk
1
1

6

( )
þ d _kk2

0
1

9

( )

a ¼ L€qqþ l€kk þ l1 ! a ¼ k
L2

d
� 1

2
� 5

4

 !
€kk þ � 1

3
þ 1

6

� �
_kk2

þ 1

2
� 1

2

� �
€kk þ þ 1

3
� 1

3

� �
_kk2

8>>>><
>>>>:

9>>>>=
>>>>;

F €ll ¼ �a ! €ll1 ¼
k
L2

d
7

4
€kk

�
þ 1

6
_kk2

�
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With the previous results, the second-order perturbation approximation emerging from EC may be

written as

Q ¼ QEC þ s _qqEC þ 1
2
s2€qqEC

l1 ¼ lEC

1 þ s _llEC

1 þ 1
2
s2€llEC

1

k1 ¼ kEC þ s _kkEC þ 1
2
s2 €kkEC

The solution shows that the equilibrium state EC is a critical state of the associated holonomic system,

and is a singular point of the Hessian of the Lagrangian; however, the non-holonomic system shows a

behavior that is characterized as a normal point. This is due to the fact that the critical mode of the
holonomic system (in this case it is the critical model of the Hessian of the Lagrangian) has a non-zero

projection on the gradient of the active constraints. Thus the constraints have the effect of stiffening the

system.

7.1.3. Analysis of the equilibrium state E2
Finally, let E2 be the equilibrium state given by

k1 ¼ 7
4

QE
1 ¼ d QE

2 ¼ d; lE
1 ¼ 9

4
kL2d lE

2 ¼ 0; F 1 ¼ F 2 ¼ 0

The first-order perturbation system is given by

L � V ¼ k
L2

3

2
� 9
4

� 9
4

3
2

2
4

3
5 l ¼ d

k
L2

�1

�1

� �
F T ¼ 1 0

0 1

� �

The solution of the first-order system is

FTZ ¼ 0 ! Z ¼ 0 _qq ¼ 0 _ll ¼ d
k
L2

1

1

� �
_kk

For the second-order system one gets

€qq ¼ 0 €ll ¼ d
k
L2

1

1

� �
€kk

With the previous results, the second-order perturbation approximation emerging from E2 is

Q ¼ QE2 þ s _qqE2 þ 1
2
s2€qqE2 l1 ¼ lE2

1 þ s _llE2

1 þ 1
2
s2€llE2

1 k ¼ kE2 þ s _kkE2 þ 1
2
s2 €kkE2

The equilibrium paths of this example are plotted in Fig. 5, which is in agreement with Fig. 3 of the paper

by Burgess (1971a). The solutions obtained from the system of perturbation equations are consistent with

the observation that the only two degrees of freedom of the system have constraints in the final state

analyzed. Thus, there is only one evolution of the Lagrangian multipliers associated to the support con-

ditions.

7.2. System with one constraint

A second example considered by Burgess (1971a) is studied in this section under the present formulation.

The system, shown in Fig. 6, is formed by rigid links joined by springs. The kinematic relation between the
degrees of freedom Q2 and Q1 and the deformation of the springs is assumed as nonlinear. There is one

control parameter k ¼ PL=k, where P is the compression along the axis AD, and k is the elastic constant of
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the linear torsional springs. In the initial configuration, the position of the joints is given by
Q2 ¼ Q1 ¼ ð1=2Þd and the springs do not have initial loads.

The total potential energy becomes

V ¼ k
2L2

5Q2
1

�
� 8Q1Q2 þ 5Q2

2 � dðQ2 þ Q1Þ þ
1

2
d2 � k 2Q2

1

�
� 2Q1Q2 þ 2Q2

2 �
1

2
d2

��

Fig. 5. Equilibrium paths for the model of Fig. 4. Key: (—) stable path; (- - -) unstable path.

Fig. 6. Two degree of freedom link model with one constraint: (a) unloaded system and (b) loaded configuration.
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There is only one constraint in this problem, given by

F 1 ¼ �2d þ Q1 þ Q2 6 0

Before the constraint F 1 becomes active, the system behaves as holonomic and the equilibrium path is

governed by

Q2 ¼ Q1 ¼
d
2

1

1� k

Along the initial path the solution is valid for 06 k6 0:5. Critical states of the holonomic system are given

by

5� 2k �4þ k
�4þ k 5� 2k

� �
x1
x2

� �
¼ 0

0

� �

and yield two distinct critical states kC1 ¼ 1 with x1 ¼ 1, x2 ¼ 1; and kC2 ¼ 3 with x1 ¼ 1, x2 ¼ �1.

For k ¼ 0:5 the constraint F 1 ¼ 0 becomes active. A plot of the equilibrium paths in this problem is

shown in Fig. 7.

7.2.1. Analysis of the equilibrium state C1
The parameters that define the critical state of the associated holonomic system C1 are

kC1 ¼ 1; QC1

1 ¼ QC1

2 ¼ d; lC1

1 ¼ 1

2
d
k
L2

; F 1 ¼ 0

Fig. 7. Equilibrium paths for the model of Fig. 6. Key: (—) stable path and (- - -) unstable path.
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The Hessian of the Lagrangian at this state is

L � V ¼ k
L2

3 �3

�3 3

� �
Because in this problem the constraints are linear in the displacements, then the singularity condition of

the Hessian of the Lagrangian Lij are the same as the singularity of the the energy Vij for the associated

holonomic system. Thus, matrix A of the perturbation systems may become singular depending on the
critical mode of the associated holonomic system.

The active constraints define the following normal and tangent spaces

FT ¼ 1 1f g FTZ ¼ 0 ! Z ¼ 1

�1

� �
The critical mode of the associated holonomic system does not belong to the tangent space because the

following dot product is not zero:

FTxC1 ¼ 2 6¼ 0

The projection of the Hessian of the Lagrangian on the tangent space is

Lp ¼ ZTLZ! Lp ¼ 12
k
L2

Since this Lp is positive definite, it is possible to say that matrix A of the perturbation system is non-sin-

gular, and thus the critical state of the associated holonomic system is a normal point of the non-holonomic

system.

To compute the perturbation approximation the load vector is

l ¼ d
k
L2

�1

�1

� �

The projection on the tangent space is

lp ¼ ZTl ¼ 0

Finally, the solution of the perturbation analysis yields

Q1 ¼ Q2 ¼ d

k ¼ 1þ s _kkC1 þ 1

2
s2 €kkC1

l ¼ 1

2
d
k
L2

þ s _llC1 þ 1

2
s2€llC1

where

_llC1 ¼ d
k
L2

_kkC1 and €llC1 ¼ d
k
L2

€kkC1

7.2.2. Analysis of the equilibrium state C2
The parameters that define the critical state of the associated holonomic system C2 are

kC2 ¼ 3 QC2

1 ¼ QC2

2 ¼ d lC2

1 ¼ 5

2
d
k
L2

F 1 ¼ 0

The Hessian of the Lagrangian at this state is

L � V ¼ k
L2

�1 �1
�1 �1

� �
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The active constraints define the following normal and tangent spaces

FT ¼ 1 1f g FTZ ¼ 0 ! Z ¼ 1
�1

� �

The critical mode of the associated holonomic system belongs to the tangent space because the following

dot product is zero:

FTxC2 ¼ 0

Matrix A of the perturbation system is singular and the critical state of the associated holonomic system

is also a critical state in the non-holonomic system. The critical mode of the non-holonomic system is

qN

lN

� �
¼ x

0

� �

To compute the perturbation approximation the load vector is

l ¼ d
k
L2

�1

�1

� �

To classify the critical state, one has to look at the dot product of the critical mode of the non-holonomic
system and the load vector of the perturbation system. This is

hqN ; li ¼ 0

Because the load vector is orthogonal to the critical mode, then this critical state is a bifurcation in the non-
holonomic system.

8. Conclusions

The classification of distinct critical states of equilibrium has been presented in this paper for non-

holonomic structural systems. The classification takes into account the equilibrium paths that pass through

such states. The procedure employs a regular perturbation expansion at the critical state in order to find an
approximation to the secondary equilibrium path emerging from the critical state. This path is valid as long

as the conditions of constraints do not change in the system; this is a limitation for the range of validity of

the secondary path, but not for the classification of the critical point itself.

The study presented the conditions required for limit and bifurcation states. The conditions are similar to

what is obtained in holonomic systems, and involve the generalized load term and a subvector associated to

the displacements in the rigid mode of the matrix of coefficients of the systems of perturbation equations.

It was also possible to isolate the conditions required for different types of bifurcation (asymmetric and

symmetric with positive and negative curvature of the emerging path). If the constrains are passive, then the
expressions reduce to their counterpart in the holonomic system (Flores and Godoy, 1992; Godoy, 2000).

One of the features of the formulation is that the conditions of critical state have been related to the

properties of the Hessian of the Lagrangian. The study led to the form of the null space of the matrix of the

coefficients of the perturbation systems by employing the null spaces of the Hessian of the Lagrangian and

its projection on the tangent space to the active constraints. A detailed analysis of the bilinear forms as-

sociated to the Hessian of the Lagrangian is also presented. The connections between the properties of the

Hessian of the Lagrangian and the type of bifurcation point may also be explained as when normal forms

are obtained in local bifurcation analysis.
From this research, it follows that the form of the equilibrium paths that pass through a critical state in a

system with constraints in the displacement field are the same as in systems without constraints whenever
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there is only one control parameter. The topic of imperfection sensitivity has not been addressed in this

paper, but it is seen as an important topic for future research.
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